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Regularizing algorithms are presented for solving linear inverse problems by steepest-descent, minimum- 
discrepancy, and conjugate:gradient methods. 

An automated system for processing data from heat experiments imposes stringent requirements on the processing 
algorithms; the most important of these are reasonable universality and independence in the algorithms, which have to 
handle a range of jobs in the processing of measurement data and other information without intervention from the operator. 
These specifications are extremely important in the case of inverse boundary-value problems in thermal conduction, on 
account of the irregularity of the formulation. Therefore, algorithms free from the deficiencies of the subjective approach 
in the derivation of the functions are required that are suitable for automatic systems, and they should be constructed via 
the theory of  methods of solving inverse problems [ 1 ]. From the mathematical viewpoint, a boundary-value problem in 
thermal conduction involves an equation of  the first kind for bodies whose thermophysical parameters are independent of 
temperature: 

Au=-f, uEU, 7EF, (1) 

where A: U ~ F is a linear continuous operator; U, F are Hilbert spaces; and the inverse operator A "1 is unbounded. We assume 
that the solution to (1) is not in general unique. 

If  (1) had a bounded inverse operator, one could use gradient minimization methods in the solution; such methods 
are attractive in that they enable one to handle unconditional minimization as well as minimization subject to constraints, 
which is particularly important for inverse problems, where proper solution is dependent on proper use of a priori information. 

However, gradient methods cannot be applied directly to incorrectly formulated problems because errors on the right 
sides and in the operator in (1) may result in divergent successive approximations, although it has been shown [2-5] that the 
corresponding sequence converges to the normal solution of  (1) on exact data. Therefore, it is necessary to examine whether 
one can modify gradient methods in such a way as to obtain stable algorithms. It has been suggested [6] that a regularizing 
algorithm can be based on simple iteration, in which the regularization consists in choosing the number of iterations to suit 
the error of  the input data. A difference from a correctly formulated problem is that the number of iterations cannot be 
arbitrarily large, but instead must be restricted to a certain number, which is less the greater the error in the input data. 
This is the only approach to the construction of  regularizing algorithms via iterative methods and has been applied [7, 8] to 
boundary-value problems in thermal conduction, although no strict mathematical demonstration was given. We have 
provided a basis for the approach and have derived the conditions for matching the number of iterations to the error of  the 
input data in the various gradient methods. 

We assume that the operator A and right side { of  (1) are known approximately, i.e., we are given a linear operator 
Ah from some family of  operators that approximate to A subject to the approximation condition ]IA--AhLI~h, together with 
the right side f ~ = - / + ' [ ,  where T6F is some noise process; l[Tllr ~ 6.  By V t. we denote the set of solutions to (1) on 
exact data. The following theorem indicates what properties should occur in an iterative algorithm in order that it may be 
regularized by matching the number of  iterations to the error r = {6, h} of  the input data. 

THEOREM 1. Let u~+i= F(u,, "[, h) be some iterative algorithm having the following features: 

1) yuoEU for the sequence {u,} derived on exact data (i.e., u~+t = F(u,, 0, 0)) converges to some element 
in a norm of space U and F(u, O, O)--u, vuEUT ; 

2) the mapping F(u, i, h) is continuous at all points {u, 0, 0}, apart perhaps from the points {u, 0, 0}, uEU?'. 

Then 7i60 > 0, h0 > 0 : V a : {6, h} : Ill/IF = 6 ~< ~0, h ~</z0, 7IN (G) : II/LN(~)-- ~IIU"->" 0. 

The proof of  the theorem is based on considering two sequences of  approximations starting from the same estimate 
uo : {u~+t ---- F(u,, ~, h)} a sequence on perturbed data and {u~} a sequence on exact data. Then we estimate the deviation of 
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the elements u .  from u~ by means of 2) for algorithm F and use the convergence of sequence {un} (property 1). 

Theorem 1 can be applied to examine the regularizability of  any iterative algorithm; as examples we consider the 
following gradient methods: 

A2 
(2) 

~ n  /'~a i rt t 0 2 t 
u o + l  u o _  od, o /~o=  

'~ [IJ u ,  IIv 

which is steepest descent, and 

which is minimal discrepancy, as well as 

j ,  u m 2 
n U = U"-- ~"J'U m, ~ - -  (3)  ttn.+lm n I~n n 

A h J'u'nn 11~ 

uC,t u c _  ac,, [3c_ (J'u c, P,du P~ = J'uC -',+- 7,,-:, ,-~, 

t C 2 II or u,~ IIu 
Po = d'Uo,  YT~-i = t C ItJ li  

(4) 

which is the conjugate-gradient method. Here J 'u=A~(Ahu-- f6)  is the gradient in the square of  the discrepancies and 

A, == llAr~u,,-- [slip is the discrepancy at iteration n. 

Methods (2), (3), and (4) satisfy condition 1) of  Theorem 1 [2-5]. It can be shown that condition 2) of  Theorem 1 
will also be obeyed for each of these methods. For this purpose it is necessary to establish that the gradient J '  ( u , f ,  h) 

and the discrepancy A(u, f, h) are continuous at all points {u, 0, 0} . Also, J '(u, 0, 0) = 0 and A (u, 0, 0) = 0, -~==~ 

uEU(. From the orthogonality of  the transform of the conjugate operator R(A*) = {uEU : u = A*[, [ E F} for the core of  

operator A N(A) = {uEU : Au = 0} it follows that AJ'(u,  O, O) = 0.r J'(u, 0, 0) = 0 .  These arguments allow us to prove 

that condition 2) is met for methods (2)-(4). Then the following applies: 

THEOREM 2. For each of the methods of (2)-(4) there exist ways of choosing the number N(o) of  iterations that 
will regularize methods (2)-(4). 

We now consider detailed ways of choosing the number of iterations. 

THEOREM 3. Methods (2), (3), and (4) are regularizing algorithms if the numbers of iterations are chosen in 
accordance with the conditions 

Nda) = min{n : A ,+ i<  2Ae= 2(6 + hll~[u)}, 
A2 A2 

Nm(o) = min{n: ~+1 < Ae}, 
2A~+t 

n-}-I l tA 2 ~_A2 ~ 1 
, ~ + t - n + v ~ ]  iiJ,uCll~ 

i = 0  Nc(c0=min n :  n+l A~ < Ae 

2 i=o ~ IlJ'u c Ilv 

(5)  

(6)  

(7)  

The proof  of  Theorem 3 is based on Theorem 2 and on the following auxiliary assertions. 

LEMMA 1. J '  (u, [, h)=/=0 for all u~D e, where De={uEU:l lAhu--h l  I ~rnin(6 + hllh-]lu)}. 

LEMMA 2. The following inequalities apply respectively for methods (2), (3), and (4): 

iluO _ -  2 o - 2 ul lv- - I lu , ,+~--u  Ilv= ft~ + 2((A--Ah) u +  "[, Ahu~--[a)p ) ~ 13~A~ (A,, - -  2Ae), 

I l u ~ ' - u  ~ ,,, - 2 m 2 2 -- - 
I [~,-- l lu , ,+a--u l i t ,=  IL,(&~+ zX.§ + 2 ( ( A - -  Ah)u+ [, 

( 8 )  

( A-~ '--A2 ) 
m A ~n~ n+1 2Ae , (9) 
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/ n iiJ,uC ir 2 
c - 2 c ~c[(A2--A2 ~E'~ " nllu I iu, ,--Ulls--Ilun+~--ull~= ~.,. n~- n+11 z , ~  ~- 

k ~-0 lid u-" llu 
�9 n A i  

2 z - - 2 A e  = BCZ[lS,uCllZ" + 2  I l J u n t l u ( ( A - - A h ) u + f ,  AhuC--f~)F >~ A . + A ~ + I  T - - - - i - -  

,'=0 Ii J 'uc I1~ ~ _ _ _  - 

~o!lJ'  u c 112u 

Inequalities (8)-(10) explain the meanings of  the methods of  halting the iteration presented in Theorem 3: in any iteration 
whose number does not  exceed the number defined by (5)-(7), one gets approximations that  tend monotonical ly to the 
solution to (1). One cannot guarantee that bet ter  approximations will be obtained with larger numbers of iterations. An 
exception is consti tuted by the conjugate-gradient method,  where condit ion (7) can be used not  to halt the process but to 
re-initiate it. In fact, it  is readily shown that  A0 ~ AN c > Ae (this follows from the fact that A decreases monotonically).  

Then we take a new initial approximation us u,v c and A ; =  hNc and continue the calculation via algorithm (4) with the 

halt condit ion of  (7) to get some new number N c ~ Nc  , for which A~>/AN c • Ae. We continue this process until 

condit ion (7) is met after the first i teration on the latest re-initiation, which gives the best approximation. These arguments 
show that  renewal of  the i teration in such a problem should be based not  on arguments of  matching the number of  iterations 
to the dimensions of  the problem, in contrast to correctly formulated problems, but  on conditions for matching the error 
of  the input  data. Inequalities (8)-(10) can also have practical application in estimating the error of  the algorithms, e.g., 
i f ~  ~have an estimate for the norm of the solution in space U. 

Theorem 3 gives an interpretat ion of the gradient algorithms of  [7, 8]. I t  can be said that the approximations 
derived by means of  the algorithm of  [7] will approximate to the solution on average, because the algorithm was constructed 
on the assumption that  the solution is a function integrable in square. In that respect, successful use of the algorithm re- 
quires a knowledge of  the magnitude of  the desired solution at the right-hand end of  the observation range. The further 
the estimate is from the true value, the worse the approximations will be, although on average they will describe the function 
well. Results are presented in Fig. l a  from a calculation on a model example with exact specification of the solution at 
the right-hand end of the interval of  observation. Experience with this algorithm confirms that successful solution of  an 
inverse problem requires a considerable reduction in the region containing the solution by means of  additional a priori 
information. For  a wide range of  boundary-value problems in thermal conduction, this information can concern the smooth- 
ness of  the solution. The algorithm of  [8] was based on the assumption that the first derivative of the solution is integrable 
in square, and by virtue of  Theorem 3 we have that  the approximation will approach the solution uniformly. Figure 1 b 
gives an example of  a calculation via this algorithm. The algorithm of  [8] used additional information on the value of the 
function at the initial instant, which was derived from conditions for conformity for the boundary and initial conditions 
for the thermal-conduction equation. One can construct algorithms that do not  use any other information apart from the 
smoothness, but this topic falls outside the scope of  this paper. 

- -  I 

• 

C 4 8 

7,ff  6 

0,§ 

o2 

x 

• 

- - - - -  x @  t / -  

r 

0 4 8 "~ 

Fig. 1. Recovery of  a heat-flux density q(T), 10 6 W/m 2 (a by means of  
the algorithm of  [7] ,b  - a l g o r i t h m  of[8] )  at one of the boundaries from 
temperature measurements at the other, which is thermally insulated: 1) 
true value of  the heat flux; 2) value recovered with the temperature 
specified exactly; 3) same with perturbed data (perturbat ion up to 10% 
of  the maximum value of  the temperature,  with a uniform distribution 
of  the perturbation).  
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Calculations on model examples show that these regularizing gradient algorithms are no less accurate than the 
classical regularization method (minimization of a smoothing functional) if the a priori information is the same. The 
algorithms are fast, since 25 iterations can be obtained in the algorithm of [8] with a realization consisting of 50 points 
in about 4 rain of run time for an ES-1020 computer. The required level of discrepancy was attained in the examples in 
7-15 iterations with perturbations up to 10% of the maximum value of the right side. The errors in the approximation 
were considered as small by comparison with the errors in the right sides and were neglected, i.e., the assumption was 
A e = 6, for which there is a certain justification in that there was no loss of stability in calculations with 6 = 0 (i.e., when 
there were only errors of approximation), while there was instability even with very small random perturbations in the 
right sides. 

Gradient algorithms allow of simple implementation, and they can be used to advantage in hybrid systems as well 
as digital ones. All of these advantages of regularizing gradient algorithms indicate that they are very promising for use in 
automatic systems. 

NOTATION 

A, A h, linear operators; U, F, ttilbert spaces; A -1 , inverse operator; h, approximation uncertainty; 6, rhs uncertainty, 
Uj ,  multiplicity of solutions to the reference equation; J~, discrepancy gradient; A ,  discrepancy for the n-th iteration;/3, 

step of descent for the n-th iteration; p , ,  conjugate direction for the n-th iteration; A*, conjugate operator; R(A), image of 
the operator A; N(A), kernel of the operator A; A e, discrepancy level determined by the reference data uncertainty. 
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